Будем говорить, что прямые на плоскости являются прямыми общего положения, если никакие две из них не параллельны и никакие три из них не проходят через одну точку. Любые несколько прямых общего положения разбивают плоскость на части; ограниченными частями разбиения будем называть те из частей, которые имеют конечную площадь. Докажите, что для всех достаточно больших верно следующее утверждение: в каждом множестве из прямых общего положения можно покрасить не менее прямых в синий цвет так, чтобы граница любой из ограниченных частей разбиения не оказалась полностью синей.
Замечание: за доказательство утверждения задачи, в котором заменено на , будут начисляться баллы, в зависимости от константы .