Для произвольных натуральных чисел kkk и nnn докажите неравенства nk+1k+1<1k+2k+...+nk<(1+1n)k+1nk+1k+1\dfrac{{{n}^{k+1}}}{k+1} < {{1}^{k}}+{{2}^{k}}+...+{{n}^{k}} < {{\left( 1+\dfrac{1}{n} \right)}^{k+1}}\dfrac{{{n}^{k+1}}}{k+1}k+1nk+1<1k+2k+...+nk<(1+n1)k+1k+1nk+1.